Energy harVesting by Invisible Solar IntegratiON in building skins

Deep Renovation Joint Workshop 5th October 2018 Rome, Italy

ENVISION Project Presentation

RENOVATION

The project

ENVISION aims at developing and demonstrating an integrated renovation concept using all the available building surfaces for thermal and electrical energy harvesting.

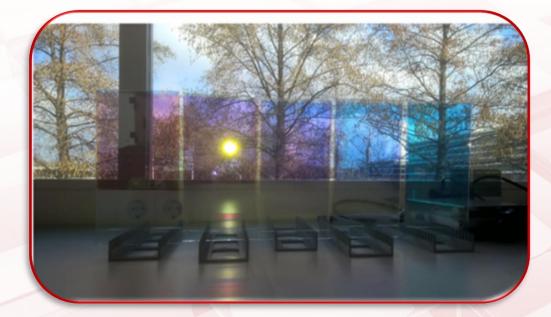
Introduction

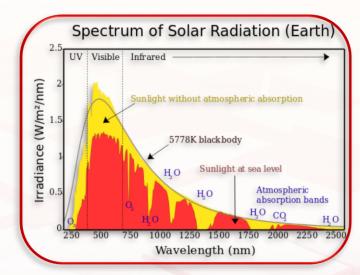
To achieve the European goal of an <u>energy-neutral built environment</u> in 2050, harvesting of <u>solar energy from all surfaces of buildings</u> should be maximized.

Considering that <u>approximately 85% of existing dwellings</u> were built before 1990 with poor insulation ($R \le 1.6 \text{ m}^2\text{K/W}$), <u>major renovation will take place</u> in the upcoming period.

Efficiently managing solar radiation on buildings provides an enormous potential, since in <u>EU28 a total of 60 billion square meters of façade</u> <u>surfaces exists</u>, and the current usage of solar radiation on opaque surfaces is still minimal.

Together with roofs this would mean a total of <u>120 billion square meters of</u> potential energy harvesting surfaces!




Concept

Energy harvesting of the façade.

ENVISION uses the invisible part of solar radiation (the **near-infrared** (NIR)), roughly **50% of the solar energy spectrum**.

Keeping the aesthetics

The NIR radiation can be harvested while retaining visible and aesthetic aspects of the façade.

Objectives

Active harvesting -----

Linking heat generation façade operation elements to district heat network

Large scale deployment potential o-----

• Easy Installation

-> Easy maintenance

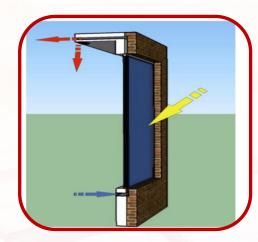
Cost Effectiveness ROI <10

-0

Project Video

Technologies – Opaque surfaces

Solar heat collectors based on the usage of NIR absorbing coloured coatings



Covered solar heat collectors using colored NIR transparent glass

Technologies – Transparent surfaces

Smart ventilated heat harvesting window

Photovoltaic (PV) harvesting glass

Demonstration

SOLAR-BEAT (SEAC, The Netherlands)

TRL6 real case-study of subsystem prototypes will be tested (façade element)

BESTIabs (EDF, France) TRL 7, the full façade concept will be demonstrated in relevant environment

Testing in real environment (TRL8)

- Link to district network and grid (Italy, University of Genoa Savona Campus)
- Real case study of a renovation action (VESTIA apartments, Delft)

Consortium

Thank you for your kind attention

TND Bart Erich Bart.erich@tno.nl

