

A product-centric approach for assessing the energy performance of solution for building renovations

Christoph Bindal-Gutsche Technical University Berlin Chair of Civil Engeneering

Agenda

Introduction

- 35% of the buildings in the EU are over 50 years old (European Commission)
- Renovation of buildings stock is the most viable solution to reduce energy consumption and CO2 emission (Nägeli et al. 2018, p. 444)
- The energy use of buildings depends to a significant extent on how the various elements of a building work together in a system (Harvey, 2009, p. 140)
- Renovation strategies are required to find existing energy saving products, that can be installed to archieve energy efficient renovation

Introduction

- To obtain a good renovation strategy in terms of improving the energetic values of the building, models for analyzing and predicting the energy balance are suitable
- Unfortunately, building energy performance models are rarely used in building design
- Most of the time, building energy models are generated based on building information models
 - → inaccurate difficult to make established statements

Case study based on a real demonstration case in Poland, Warsaw

Object was build in 1965 and consists a twostorey kindergarten

Volume: 2713 m3

Through renovation procedures, the energy - consumption of the building are to be reduced

_Therefore, new windows and a external facade will be installed

Based on the building energy model of the demonstration project in Warsaw, the design exchange was performed by two entity classes and parameters for windows and panels.

field	Units	06.1	06,2	06.3	08.4
Name		VO6_ Window_PVC	VI7_ mindow_PVC	VOB_ Window_PIC	VD9_ Window_PV0
	W/mPK	1,5	1,5	1,5	1,5
Solar Heat Gain coefficient		0,7	8,7	0,7	6,7
760Je 3: Mean volues	of the wine	bac, which will be	integrate into the	eriginal building s	nenge model
Table 1: New volves	of the wind	lano, which ellifie	integrate into the	ariginal building a	nengy model
Juble 1: New volves Field Name	of the wind	lano, which all be Chill 1 VOS_ Window_PVC	06, 2 V30_ Window_PVC	original building o Obj. 3 VOI_BGTec	00(.4 VDB_ Window_PVC
Joble 1: New volves Field Name U-Factor	d the wine Units W/ mR	ono, which ell or one, 1 VOS_ Window_PVC 0,9	integrate into the USA_2 V10_ Window_PVC 0,3	original building a Obj. 3 VOJ_BGTec 0,9	094.4 VDL_ Window_PW

	Density	Thickness			
Material	Defm1	(mm)	A DW/res	8.1m/K/W1	Diff Wid
investure of the field area					
Air passage warm side Rol 8.13					
Mineral wool 04	20	50	0.040	1.250	1
termanel gipsum filme	1150	Dec 50	0.520	0.039	13
Vapour break	11.00	0.2	0.2	0.1	300000
Mineral wool 035	50	200	0.035	5.714	1
	950	15	0.3	0.05	40
light morter UM 21	780	10	0.21	0.048	\$5/35
tic passage cold side five 0.04					

Field	Units	Obj. 1	Obj. 2	Obj. 3	Obj. 4
Name		V06_ Window_PVC	V07_ Window_PVC	V08_ Window_PVC	V09_ Window_PVC
U-Factor	W/m ² K	1,5	1,5	1,5	1,5
Solar Heat Gain coefficient		0,7	0,7	0,7	0,7

Table 1: New values of the windows, which will be integrate into the original building energy model

Field	Units	Obj. 1	Obj. 2	Obj. 3	Obj. 4
Name		V09_ Window_PVC	V10_ Window_PVC	V03_BGTec	V08_ Window_PVC
U-Factor	W/m ² K	0,9	0,9	0,9	0,9
Solar Heat Gain coefficient		0,53	0,53	0,27	0,53

Table 2: Attributes and values of the window

Material	Density [kg/m³]	Thickness s[mm]	Λ [W/mK	R [m²K/W]	Diff Wid
Structure of the field area					
Air passage warm side Rsi 0.13					
Mineral wool 04	20	50	0.040	1.250	1
Fermacell gipsum fibre	1150	50	0.320	0.039	13
Vapour break	1100	0.2	0.2	0.1	100000
Mineral wool 035	50	200	0.035	5.714	rechner1
Fermacell Powerpanel	950	15	0.3	0.05	40
Light mortar LM 21	700	10	0.21	0.048	0,371
Air passage cold side Rse 0.04					

Table 3: Attributes and values of the new Plug and play panel

Approach – Background

Product centric assessment process

Figure 1: Overall process where we build product classes based on attributes (phase 1), run the simulation based on the chosen renovation option (phase 2) and present the results (phase 3).

Product centric assessment process

Figure 1: process where we build product classes based on attributes (phase 1)

First Phase: define the building elements

Process step 1

define product classes based on their attributes

Figure 2: Description of the attributes for the renovation product class Material and Window

Product centric assessment process

Process step 2

3

2

Second phase of the process is characterized by three internal process steps

Start the new simulation

Insert elements of the new window

Analyzing building model regarding the elements to be removed

! ====================================
WindowMaterial:SimpleGlazingSystem,
V07_Window_PVC_2350x2250_Win (10mm), ! Name
1.5, ! U-Factor
0.7, ! Solar Heat Gain Coefficient
; ! Visible Transmittance (*)
! ====================================
! ====================================
Construction,
H06_Window, ! Name
V07_Window_PVC_2350x2250_Win (10mm); ! Outside Layer

Figure 3: Attributes for the renovation product class Window in EnergyPlus

Results

Our product centric approach allows us to use, add and remove building elements within the as-is building energy model

as-is energy model serves as the baseline for the further simulation of the different renovation options

no additional expenditure in the redesign of energy models

fast and comparable way of simulating and displaying energy data

Future work

 \bigcirc

We only consider windows and panels as renovation options

During the comingmonths we will continue to expand our process and be able to map more product types, such as HVAC

Thank you for the attention